library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data(iris)
class(iris)
## [1] "data.frame"
glimpse(iris)
## Rows: 150
## Columns: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.…
## $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.…
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.…
## $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.…
## $ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s…
Answer: there are 150 rows i.e. observations and 5 columns i.e. variables
iris1 <- filter(iris,Species %in% c("versicolor","virginica"),Sepal.Length > 6, Sepal.Width > 2.5)
glimpse(iris1)
## Rows: 56
## Columns: 5
## $ Sepal.Length <dbl> 7.0, 6.4, 6.9, 6.5, 6.3, 6.6, 6.1, 6.7, 6.1, 6.1, 6.4, 6.…
## $ Sepal.Width <dbl> 3.2, 3.2, 3.1, 2.8, 3.3, 2.9, 2.9, 3.1, 2.8, 2.8, 2.9, 3.…
## $ Petal.Length <dbl> 4.7, 4.5, 4.9, 4.6, 4.7, 4.6, 4.7, 4.4, 4.0, 4.7, 4.3, 4.…
## $ Petal.Width <dbl> 1.4, 1.5, 1.5, 1.5, 1.6, 1.3, 1.4, 1.4, 1.3, 1.2, 1.3, 1.…
## $ Species <fct> versicolor, versicolor, versicolor, versicolor, versicolo…
Answer: 56 observations, still 5 variables
iris2 <- select(iris1, Species, Sepal.Length, Sepal.Width)
view(iris2)
glimpse(iris2)
## Rows: 56
## Columns: 3
## $ Species <fct> versicolor, versicolor, versicolor, versicolor, versicolo…
## $ Sepal.Length <dbl> 7.0, 6.4, 6.9, 6.5, 6.3, 6.6, 6.1, 6.7, 6.1, 6.1, 6.4, 6.…
## $ Sepal.Width <dbl> 3.2, 3.2, 3.1, 2.8, 3.3, 2.9, 2.9, 3.1, 2.8, 2.8, 2.9, 3.…
Answer: still 56 observations, just the 3 variables specified
iris3 <- arrange(iris2,by=desc(Sepal.Length))
head(iris3)
## Species Sepal.Length Sepal.Width
## 1 virginica 7.9 3.8
## 2 virginica 7.7 3.8
## 3 virginica 7.7 2.6
## 4 virginica 7.7 2.8
## 5 virginica 7.7 3.0
## 6 virginica 7.6 3.0
iris4 <- mutate(iris3,Sepal.Area=Sepal.Length*Sepal.Width)
head(iris4)
## Species Sepal.Length Sepal.Width Sepal.Area
## 1 virginica 7.9 3.8 30.02
## 2 virginica 7.7 3.8 29.26
## 3 virginica 7.7 2.6 20.02
## 4 virginica 7.7 2.8 21.56
## 5 virginica 7.7 3.0 23.10
## 6 virginica 7.6 3.0 22.80
glimpse(iris4)
## Rows: 56
## Columns: 4
## $ Species <fct> virginica, virginica, virginica, virginica, virginica, vi…
## $ Sepal.Length <dbl> 7.9, 7.7, 7.7, 7.7, 7.7, 7.6, 7.4, 7.3, 7.2, 7.2, 7.2, 7.…
## $ Sepal.Width <dbl> 3.8, 3.8, 2.6, 2.8, 3.0, 3.0, 2.8, 2.9, 3.6, 3.2, 3.0, 3.…
## $ Sepal.Area <dbl> 30.02, 29.26, 20.02, 21.56, 23.10, 22.80, 20.72, 21.17, 2…
Answer: there are still 56 observations and now 4 variables
iris5 <- summarize(iris4, Average.Sepal.Length=mean(Sepal.Length, na.rn=TRUE), Average.Sepal.Width=mean(Sepal.Width, na.rn=TRUE), Sample.Size=n())
print(iris5)
## Average.Sepal.Length Average.Sepal.Width Sample.Size
## 1 6.698214 3.041071 56
iris6 <- iris4 %>%
group_by(Species) %>%
summarize(Average.Sepal.Length=mean(Sepal.Length,na.rm=TRUE), Average.Sepal.Width=mean(Sepal.Width,na.rm=TRUE), Sample.Size=n())
print(iris6)
## # A tibble: 2 × 4
## Species Average.Sepal.Length Average.Sepal.Width Sample.Size
## <fct> <dbl> <dbl> <int>
## 1 versicolor 6.48 2.99 17
## 2 virginica 6.79 3.06 39
irisFinal <- iris %>%
filter(Species %in% c("versicolor","virginica"),Sepal.Length > 6, Sepal.Width > 2.5) %>%
select(Species, Sepal.Length, Sepal.Width) %>%
arrange(by=desc(Sepal.Length)) %>%
mutate(Sepal.Area=Sepal.Length*Sepal.Width) %>%
group_by(Species) %>%
summarize(Average.Sepal.Length=mean(Sepal.Length,na.rm=TRUE), Average.Sepal.Width=mean(Sepal.Width,na.rm=TRUE), Sample.Size=n())
print(irisFinal)
## # A tibble: 2 × 4
## Species Average.Sepal.Length Average.Sepal.Width Sample.Size
## <fct> <dbl> <dbl> <int>
## 1 versicolor 6.48 2.99 17
## 2 virginica 6.79 3.06 39
view(iris)
longerIris <- iris %>%
pivot_longer(cols = Sepal.Length:Petal.Width, names_to="Measure", values_to="Value")
head(longerIris)
## # A tibble: 6 × 3
## Species Measure Value
## <fct> <chr> <dbl>
## 1 setosa Sepal.Length 5.1
## 2 setosa Sepal.Width 3.5
## 3 setosa Petal.Length 1.4
## 4 setosa Petal.Width 0.2
## 5 setosa Sepal.Length 4.9
## 6 setosa Sepal.Width 3